Fast Low-Rank Semidefinite Programming for Embedding and Clustering
نویسندگان
چکیده
Many non-convex problems in machine learning such as embedding and clustering have been solved using convex semidefinite relaxations. These semidefinite programs (SDPs) are expensive to solve and are hence limited to run on very small data sets. In this paper we show how we can improve the quality and speed of solving a number of these problems by casting them as low-rank SDPs and then directly solving them using a nonconvex optimization algorithm. In particular, we show that problems such as the k-means clustering and maximum variance unfolding (MVU) may be expressed exactly as low-rank SDPs and solved using our approach. We demonstrate that in the above problems our approach is significantly faster, far more scalable and often produces better results compared to traditional SDP relaxation techniques.
منابع مشابه
Convex Perturbations for Scalable Semidefinite Programming
Many important machine learning problems are modeled and solved via semidefinite programs; examples include metric learning, nonlinear embedding, and certain clustering problems. Often, off-the-shelf software is invoked for the associated optimization, which can be inappropriate due to excessive computational and storage requirements. In this paper, we introduce the use of convex perturbations ...
متن کاملThe Mixing method: coordinate descent for low-rank semidefinite programming
In this paper, we propose a coordinate descent approach to low-rank structured semidefinite programming. The approach, which we call the Mixing method, is extremely simple to implement, has no free parameters, and typically attains an order of magnitude or better improvement in optimization performance over the current state of the art. We show that for certain problems, the method is strictly ...
متن کاملInformation Theoretical Clustering via Semidefinite Programming
We propose techniques of convex optimization for information theoretical clustering. The clustering objective is to maximize the mutual information between data points and cluster assignments. We formulate this problem first as an instance of max k cut on weighted graphs. We then apply the technique of semidefinite programming (SDP) relaxation to obtain a convex SDP problem. We show how the sol...
متن کاملFast Graph Laplacian Regularized Kernel Learning via Semidefinite-Quadratic-Linear Programming
Kernel learning is a powerful framework for nonlinear data modeling. Using the kernel trick, a number of problems have been formulated as semidefinite programs (SDPs). These include Maximum Variance Unfolding (MVU) (Weinberger et al., 2004) in nonlinear dimensionality reduction, and Pairwise Constraint Propagation (PCP) (Li et al., 2008) in constrained clustering. Although in theory SDPs can be...
متن کاملVisualizing Graphs with Structure Preserving Embedding
Structure Preserving Embedding (SPE) is a method for embedding graphs in lowdimensional Euclidean space such that the embedding preserves the graph’s global topological properties. Specifically, topology is preserved if a connectivity algorithm can recover the original graph from only the coordinates of its nodes after embedding. Given an input graph and an algorithm for linking embedded nodes,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007